Our mission
The central theme of our research group is integrating materials science, catalysis, and electrochemistry to pioneer innovative solutions in energy storage, energy conversion, catalysis processes, and sustainable chemical processes. We are dedicated to advancing the science of transforming renewable energy into valuable chemicals and fuels, developing cutting-edge electrochemical technologies, and designing catalysts and reactors that enable cleaner, more efficient energy systems. Our research aims to contribute to a sustainable future by tackling pressing challenges and addressing fundamental questions in energy and chemical sciences.
1. Energy storage and conversion (Power-to-Chemicals) and efficient and clean utilization of energy (Chemicals-to-Power)
This involves converting renewable energy into chemical energy and storing it in chemicals or fuels. Specific areas include decentralized or electrochemical ammonia synthesis (e.g., Li-mediated NRR and Ca-mediated NRR), exploring novel methods for Nitrogen activation under mild conditions, understanding catalysis mechanism, electrosynthesis of fuels (e.g., methane electro-oxidation and C-N coupling), and electrocatalysis (e.g., ammonia electro-oxidation and decomposition).
Ammonia related publications
Zhou, Y.#; Fu, X.#; Chorkendorff, I.*; Nørskov, J. K.*; Electrochemical Ammonia Synthesis: The Energy Efficiency Challenge, ACS Energy Letters, 2025, 10, 128-132.
Li, S.#; Fu, X.#; Nørskov, J. K.*; Chorkendorff, I.* Towards Sustainable Ammonia Electrosynthesis, Nature Energy, 2024, 9, 1344-1349. (Invited)
Fu, X.*; Chorkendorff, I.* Prospects and Challenges in Electrochemical Nitrogen Activation for Ammonia Synthesis, Science China Chemistry, 2024, 67, 3510-3514. (Invited)
Fu, X.*; Li, S.; Nielander, A. C.; Mygind, J. B.; Kibsgaard, J.; Chorkendorff, I.* Effect of Lithium Salts on Lithium-mediated Ammonia Synthesis, ACS Energy Letters, 2024, 9, 3790-3795.
Fu, X.#; Xu, A.#; Pedersen, J. B.; Li, S.; Sažinas, R.; Andersen, S. Z.; Saccoccio, M.; Zhou, Y.; Deissler, N. H.; Mygind, J. B.; Deissler, N. H.; Kibsgaard, J.; Vesborg, P. C.; Nørskov, J. K.*; Chorkendorff, I.* Phenol as Proton Shuttle and Buffer for Lithium-mediated Ammonia Electrosynthesis, Nature Communications, 2024, 15, 2417.
Fu, X.* Lithium-Mediated Nitrogen Reduction for Electrochemical Ammonia Synthesis: From Batch to Flow Reactor, Materials Today Catalysis, 2023, 3: 100031. (Invited)
Fu, X.* Some thoughts about the electrochemical nitrate reduction reaction. Chinese Journal of Catalysis, 2023, 53, 8-12. (Invited)
Fu, X.#; Niemann, V. A.#; Zhou, Y.#; Li, S.; Pedersen, J. B.; Saccoccio, M.; Andersen, S. Z.; Enemark-Rasmussen, K.; Benedek, P.; Xu, A.; Deissler, N. H.; Mygind, J. B.; Deissler, N. H.; Kibsgaard, J.; Vesborg, P. C.; Nørskov, J. K.*; Jaramillo, T. F.*; Chorkendorff, I.* Calcium-Mediated Nitrogen Reduction for Electrochemical Ammonia Synthesis, Nature Materials, 2024, 23(1), 101-107.
Fu, X.#; Pedersen, J. B.#; Zhou, Y.#; Saccoccio, M.; Li, S.; Sažinas, R.; Li, K.; Andersen, S. Z.; Xu, A.; Deissler, N. H.; Mygind, J. B.; Wei, C.; Kibsgaard, J.; Vesborg, P. C.; Nørskov, J. K.*; Chorkendorff, I.* Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 374 (6633), 707-712.
Fu, X.; Zhang, J.; Kang, Y.* Recent advances and challenges of electrochemical ammonia synthesis. Chem Catalysis. 2022, 2 (10), 2590-2613. (Invited)
Fu, X.; Zhao, X.; Hu, X.; He, K.; Yu, Y.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R.; Kang, Y.* Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Applied Materials Today. 2020, (19), 100620.
Co-authored publications
Li, S.#; Zhou, Y.#; Fu, X.; Pedersen, J. B.; Saccoccio, M.; Andersen, S. Z.; Enemark-Rasmussen, K.; Kempen, P.J.; Damsgaard, C.D.; Xu, A.; Sažinas, R.; Mygind, J. B.; Deissler, N. H.; Kibsgaard, J.; Vesborg, P. C.; Nørskov, J. K.*; Chorkendorff, I.* Long-term continuous ammonia electrosynthesis, Nature, 2024, 629, 92-97.
Deissler, N. H.; Mygind, J. B.; Li, K.; Niemann, V. A.; Benedek, P.; Vinci, V.; Li, S.; Fu, X.; Vesborg, P. C.; Jaramillo, T. F.; Kibsgaard, J.; Chorkendorff, I.* Operando Investigations of the Solid Electrolyte Interphase in the Lithium Mediated Nitrogen Reduction Reaction, Energy & Environmental Science, 2024, 17, 3482-3492.
Mygind, J. B.; Pedersen, J. B.; Li, K.; Deissler, N. H.; Saccoccio, M.; Fu, X.; Li, S.; Sažinas, R.; Andersen, S. Z.; Vesborg, P. C.; Kibsgaard, J.; Chorkendorff, I.* Is Ethanol Essential for the Lithium-Mediated Nitrogen Reduction Reaction? ChemSusChem, 2023, 16(18): e202301011.
McShane, E. J.; Niemann, V.; Benedek, P.; Fu, X.; Nielander, A. C.; Chorkendorff, I.; Jaramillo, T. F.; Cargnello, M.* Quantifying Influence of the Solid-Electrolyte Interphase in Ammonia Electrosynthesis. ACS Energy Letters, 2023, 8 (10), 4024-4032.
Li, S.#; Zhou, Y.#; Li, K.; Saccoccio, M.; Sažinas, R.; Andersen, S. Z.; Pedersen, J. B.; Fu, X.; Shadravan, V.; Chakraborty, D.; Kibsgaard, J.; Vesborg, P. C.; Nørskov, J. K.*; Chorkendorff, I.* Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase. Joule, 2022, 6 (9), 2083-2101.
2. Electrochemical organic synthesis
This includes artificial synthesis of amino acids, electrosynthesis of high-value fine chemicals, and electrocatalysis in organic systems, such as electrochemical hydrogenation and hydrogen oxidation reaction (HOR). We also focus on understanding catalysis and reaction mechanisms to facilitate the design of efficient catalysts.
Selected publications
Fu, X.#; Pedersen, J. B.#; Zhou, Y.#; Saccoccio, M.; Li, S.; Sažinas, R.; Li, K.; Andersen, S. Z.; Xu, A.; Deissler, N. H.; Mygind, J. B.; Wei, C.; Kibsgaard, J.; Vesborg, P. C.; Nørskov, J. K.*; Chorkendorff, I.* Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 374 (6633), 707-712.
Mygind, J. B.*; Deissler, N. H.; Li, S.; Fu, X.; Kibsgaard, J.; Chorkendorff, I.* Hydrogen Oxidation Beyond Water: In Search of Proton Mediation Pathways. ACS Electrochemistry, 2025, doi/10.1021/acselectrochem.5c00009.
3. Catalyst and reactor design
This covers precision synthesis of model (single crystal) catalysts, exploration of synthesis mechanisms, the design of novel electrochemical reactors (e.g., continuous-flow cell and solid-electrolyte cell), and the development of solid-state electrolytes (e.g., lithium-ion and proton conductors).
Selected publications
Zhang, J.#; Fu, X.#; Kwon, S.#; Chen, K.; Liu, X.; Yang, J.; Sun, H.; Wang, Y.; Uchiyama, T.; Uchimoto, Y.; Li, S.; Li, Y.; Fan, X.; Chen, G.; Xia, F.; Wu, J.; Li, Y.; Yue, Q.; Qiao, L.; Su, D.; Zhou, H.; Goddard, W. A., III*; Kang, Y.* Tantalum Stabilized Ruthenium Oxide Electrocatalysts for Industrial Water Electrolysis, Science, 2024, DOI: 10.1126/science.ado9938.
Fu, X.#; Li, H.#; Xu, A.#; Xia, F.; Zhang, L.; Zhang, J.; Ma, D.; Wu, J.; Yue, Q.; Yang, X.; Kang, Y.* Phase engineering of intermetallic PtBi2 nanoplates for the formic acid electrochemical oxidation. Nano Letters, 2023, 23 (12), 5467-5474.
Fu, X.#; Zhang, J.#; Zhan, S.; Xia, F.; Wang, C.; Ma, D.; Yue, Q.; Wu, J.; Kang, Y.* High-entropy alloy nanosheets for fine-tuning hydrogen evolution. ACS Catalysis. 2022, 12 (19): 11955-11959.
Fu, X.; Wang, J.; Hu, X.; He, K.; Tu, Q.; Yue, Q*.; Kang, Y.* Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel. Advanced Functional Materials, 2022, 32 (10): 202107182.
Zhang, J.#; Fu, X.#; Xia, F.; Zhang, W.; Wu J.; Wang, D.*; Yue, Q.* Core-shell nanostructured Ru@Ir-O electrocatalysts for superb oxygen evolution in acid. Small, 2022, 18 (14): 202108031.
Yu, Y.; Xia, F.; Wang, C.; Wu, J.; Fu, X.*; Ma, D.; Lin, B.; Wang, J.; Yue, Q.*; Kang, Y. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Research. 2022, 15(9): 7868-7876.
Fu, X.#; Liu, J.#; Kanchanakungwankul, S.; Hu, X.; Yue, Q.; Truhlar, D. G.; Hupp, J. T*.; Kang, Y.* Two-dimensional Pd rafts confined in copper nanosheets for selective semihydrogenation of acetylene. Nano Letters, 2021, 21 (13), 5620-5626.
Fu, X.; Wang, Y.; Shen, H.; Yu, Y.; Xu, F.; Zhou, G.; Xie, W.; Qin, R.; Dun, C.; Pao, C.; Chen, J.; Liu, Y.; Guo, J.; Yue, Q.; Urban, J. J.; Wang, C.; Kang, Y.* Chemical upgrade of carbon monoxide to acetate on an atomically dispersed copper catalyst via CO-insertion. Materials Today Physics, 2021, (19), 100418.
Fu, X.; Zhang, J.; Kang, Y.* Electrochemical reduction of CO2 towards multi-carbon products via a two-step process. Reaction Chemistry & Engineering. 2021, 4 (6), 612-628.
Luc, W.#; Fu, X.#; Shi, J.; Lv, J.; Jouny, M.; Ko, B.; Xu, Y.; Tu, Q.; Hu, X.; Wu, J.; Yue, Q.; Liu, Y.; Jiao, F.*; Kang, Y.* Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nature Catalysis. 2019, 2 (5), 423-430.